Z–Goggles

Multi-function Vision System

Group 1

C.J. Silver Geoff Jean Will Petty Cody Baxley

What are Z-Goggles?

- Vision Enhancement System
- 3 cameras Visible, IR, UV
- Image change functions Shift, Drunken Vision, Photo-negative, Spectrum Shift
- Function control via UI controller
- Portable, helmet-mounted screen
- Battery-powered

Goals and Objectives

- Cost-effective engineering
 - Low cost components requiring more work
- Portability
 - Battery and backpack/helmet system allows movement
- Simple to use
 - Simple UI controller for video mode and functions
- Effective video processing and display
 - Minimize choppiness by maximizing processing speed via parallel logic implementation

Design Approach

Separate systems - Integrated at later stages

- Optical System
- Video Processor
- Display
- User Interface
- Power supply

Overall Project Diagram

Optical System overview

Optical System Specs and Reqs

- The unit shall contain three cameras to capture live video data.
- One camera will be filtered normally to allow color video. One camera will be filtered with a UV pass filter to allow UV video. The final camera will be filtered with an IR pass filter to allow IR video.
- ▶ Cameras resolution will be at least 320 x 240, up to 640 x 480.
- The Optical System will output RGB or YUV data in a usable or convertible size (8bit is the target for the Video Processor).
- The system shall be capable of achieving at least 15 fps (30 preferred).

Design Decision- Webcam issue

- Initial design concept used Logitech C200 webcam for cameras
- Discussion with Logitech technical support revealed necessity to create a dummy Windows driver to run cameras
- Reverse engineering the driver to decode the USB information was deemed too time intensive – thus the move to the CM-26N

Checking IR filter

- Opened camera and determined an IR filter was present
- Filter will be removed and replaced with Wood's Glass for the UV cam, and photo negative film for the IR camera.

Difficulty - NTSC camera not working

- No image found within the output, though color changes slightly when objects are moved into view.
- Camera is experiencing sync signal issues.
- Connections are properly grounded and powered.
- Tested on multiple televisions, old and new.

Design decision - Camera Replacement

- Due to issues, decided to check other cameras.
- Found a digital output camera that has the specifications we need, the C3188A, based on OV7620 sensor from OmniVision.
- ▶ 16/8 bit output RGB or YUV, or monochrome composite for testing.
- Programmable through I2C interface.

Video Processor overview

Design decision - Platform (DSP vs. FPGA)

FPGA

- Scattered support of operations
- Time-consuming implementation
- Timing guarantees
- Cheap development environments

DSP

- Strong compiler and toolchain support
- Fast linear multiply/add
- Greatly simplify implementations of 2d transforms
- No guarantee of timing/throughput

Design decision – Which FPGA used, why?

- S3BOARD
 - 1Mb onboard asynchronous SRAM 10ns access time
 - 500MHz max internal clock speed
 - Too few GPIO pins for 16-bit inputs
- Nexys2
 - 8bpp Video
 - Lots of GPIO pins
 - Higher gate count

Video Processor Specs and Reqs

- ▶ 640x480 30fps 8/16bpp
- Pixel process time: 108ns
- Multiply/Add time <20ns</p>
- Buffer Read at least 3x faster than pixel clock
- FIFO based system
- Dual-buffer cache system
 - 3 video lines of storage for transforms
 - 3x3 storage element to reduce memory load

Success - Subsystem Construction

- Optimization of edge detection with Sobel Operator
- Optimization and proof for integer blur
- Buffer controller design
- Video output controller

Design - Edge Detection/Blur

Α	В	C
D		E
F	G	Н

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

$$Gx=(H-A)+(F-C)+(G-B)<<1$$

 $Gy=(H-A)+(C-F)+(E-D)<<1$
 $G=|Gx|+|Gy|$

$$(2^{Z})(2^{X}+3)+2^{Y}=1$$

-4	-1	0
-3	0	-1
-2	1	-2
-1	2	-3
0	3	-4

Difficulty - Possible Timing problems

- Synchronization of video frames
- Merge latency
- Data sampling
- I2C control translation between UI and camera

Display Specs and Reqs

- The unit's display system shall be capable of displaying at least 15 fps (30 preferred).
- The unit's display system shall be VGA compatible for easy interfacing.
- The unit's display system shall be mounted approx 6" from the user's face, and enclosed in a manner that allows the user to focus on the screen.
- The unit's display system will be capable of outputting a resolution of 640x480.
- The unit's display system shall receive valid frame data via a VGA controller on a FPGA board.

Design decision – PSone screen vs. others

LCD Screen	Resolution	Connection	Price
Crystalfontz CFAF320240F-T	320x240	QVGA	\$51.16
Sharp Microelectronics LS037V7Dw01	640x480	VGA/QVGA	\$150+
SCPH-131 Sony Playstation	640x480	AV in	\$55

VGA Interface

Software: VGA Controller:

Signal Timing:

	Pixel Clock	Horizontal (in Pixels)			Vertical (in Lines)				
Format						Active Video			
640x480, 60Hz	25.175	640	16	96	48	480	11	2	31

Output Signals:

VGA Interface

Sony LCD screen needs to be modified to support VGA connection

Pin layout of VGA connector

PIN	PIN Signal
1	RED Red video
2	GREEN Green video
3	BLUE Blue video
5	GND Signal ground
6	RED_RTN Red ground
7	GREEN_RTN Green ground
8	BLUE_RTN Blue ground
9	VDC 5 VDC supply (fused)
13	HSYNC Horizontal sync

Solder points from VGA connection

PSOne Header Wiring (Solder Side)

VGA Pin Wiring (Solder Side)

Display work for prototype

- Programmed an 8-bit VGA controller in Verilog
- Soldered the connecting wires of the VGA output cord to the correct pins on the screen
- Assembled working VGA connection cord with ribbon wire and the correct DB-15 connector
- Tested the output of screen with VGA controller on FPGA

Display System Prototype

Display Screen Difficulties

- Composite Sync Pulse timing problems
 - -Not a XOR of Vertical and Horizontal Syncs
- Backlight LED issues
 - Never worked; Need to be replaced
- No Datasheet
 - -Hard to find consistent information

UI Specs and Reqs

- An ATMega168 microcontroller will be uses to control the user interface.
- The system's user interface shall be contained in a switch box remote
- The system's user interface shall contain one switch for each individual camera and function
- The user interface software shall allow for multiple functions when feasible, and deal with multiple function switches when not.
- The user interface software shall allow for easy modification should multiple camera image fusion become feasible.

User Interface overview

User Interface Remote Control

- Three Camera Switches
- Four Function Switches
- •Power Light (LED)

Microcontroller/ FPGA Interface

Directly Connected Signals

- •Simple 7 High/Low Signals
- Plenty of Open Pins on FPGA

User Interface Hardware Design

User Interface Software Design

Look-UP-Table

- Array of 128 possible choices
- •Valid choice = 1, Invalid choice = 0

Reason for Design

- Goal is to allow for any possible combination of Cameras and Functions
- Current design allows for easy modification of any choice to be allowed or not

User Interface Development Tools

Arduino Duemilanove board

- Easy Java-like Wiring language
- Free Open Source Software
- USB Programmable
- Free, We already had one!

Power Supply Overview

Power Specs and Reqs

- The unit shall have a portable power supply, such as a type of battery.
- The unit shall provide power outputs of 12 Volts and 5 Volts.
- The power source shall be safely placed in the backpack, and any power lines that are run outside will be covered safely.
- The power source shall have storage capacity capable of running the system for 2 hours.
- The power supply shall have an On/Off switch to shut the system off.

Battery

- Original battery chosen: 12 Volt, 7 Amp hour, Lead Acid
- Could be replaced with a new battery for final system; new cameras only require 5V input.
- New battery will likely be 6 Volt, 2.2 Amp hour, NiMH; this will cause a shorter use-time, but it is lighter and cleaner.

LMZ12003 Regulator Design

- Regulator for original design.
- ▶ Input 12V : Output ~5 V, as shown.
- Capable of up to 3A output load, which covers our entire system, if necessary.
- Automatic shutdown when 1.18 V is reached.

Efficiency and Thermal Considerations

- Over 90% efficient from 0.3 A to roughly 2.5A output.
- Likely no thermal issues at the regulator.
- If using new power source, another regulator with comparable or better specs has been found.

Physical Specs and Reqs

- The unit shall have a weight of no more than 50 lbs.
- No more than 10 lbs. can be attached to the user's head; the remaining weight shall be distributed elsewhere.
- Any electrical components attached to the helmet shall be covered for safety.
- Components in the system will be secured properly with screws and within the backpack to prevent problems during movement.

Physical Specs and Reqs

- The unit shall have a weight of no more than 50 lbs.
- No more than 10 lbs. can be attached to the user's head; the remaining weight shall be distributed elsewhere.
- Any electrical components attached to the helmet shall be covered for safety.
- Components in the system will be secured properly with screws and within the backpack to prevent problems during movement.

Physical Distribution Overview

Current Project budget/ Estimated Final budget

- C3188A Camera \$56.95 x3 = \$170.88
- UV and IR lenses \$60.00
- Nexsys2 FPGA \$100.00
- PSOne Display Screen \$60.00
- 12 V7 AH PS1270 Battery \$19.00
- Power Supply 5V Regulator \$5.00
- Arduino Duemilanove \$30.00
- Backpack and Bicycle Helmet \$40.00
- Testing supplies \$100.00
- Total: \$584.88

Current project progress (as of CDR presentation)

Immediate plans for completion

- Resolve camera issue; configure new camera for digital output while testing filtering via composite output.
- Continue building FPGA code for video processor.
- Continue UI microcontroller programming and setup, order PCB.
- Reconfigure power supply design for new camera, if cost and time permit; otherwise, build as currently designed.

Questions?